| |
Poblete-Echeverría, C., Hernández, I., Iñiguez, R., Gutiérrez, S., Barrio, I., Y Tardáguila, J. (2025). Using artificial intelligence for automatic and fast detection of downy mildew symptoms in grapevine canopies. European Journal of Agronomy, 170, 127755.
https://doi.org/10.1016/j.eja.2025.127755
Íñiguez, R., Wolela, F., Gonzalez Pavez, M. I., Barrio, I., Tardáguila, J., Venter, T., Y Poblete-Echeverria, C.(2025). Artificial intelligence-driven classification method of grapevine major phenological stages using conventional RGB imaging: This article is part of the special issue of the GiESCO 2025 meeting. OENO One, 59(2).https://doi.org/10.20870/oeno-one.2025.59.2.9306
Poblete-Echeverria, C., Berry, A., Venter, T., Velez, S., González Pavez, M. I., Y Iñiguez, R. (2025). Morphological image analysis for estimating grape bunch weight under different irrigation regimes in Cabernet-Sauvignon: This article is part of the special issue of the GiESCO 2025 meeting. OENO One, 59(2). https://doi.org/10.20870/oeno-one.2025.59.2.9309
González-Pavez, M.I., Ortega-Farias, S., Poblete-Echeverria, C., Gamboa, M.J., Y Vargas, S. (2025). Application of spectral index-based contour mapping for non-destructive ripeness monitoring in water stressed Vitis vinifera L. (Cabernet-Sauvignon): This article is part of the special issue of the GiESCO 2025 meeting. OENO One, 59(2). https://doi.org/10.20870/oeno-one.2025.59.2.9308
Berry, A., Vivier, M.A. Y Poblete-Echeverria, C.* (2025). Evaluation of canopy fraction-based vegetation indices, derived from multispectral UAV imagery, to map water status variability in a commercial vineyard. Irrigation Science. 43, 135–153. https://doi.org/10.1007/s00271-023-00907-1
Towers, P., Roulet, S., Poblete-Echeverria, C.* (2025). Vine yield estimation from block to regional scale employing remote sensing, weather, and management data. Information Processing in Agriculture, 12, 2, 195-208. https://doi.org/10.1016/j.inpa.2024.06.001.
Duncan S., McLeod A., Poblete-Echeverria, C*. (2024). Application of UAV and satellite technologies for assessing phytophthora root rot severity in avocado orchards. Frontiers in Agronomy (6). https://doi=10.3389/fagro.2024.1419479
Herrera-Poyato, D., Domínguez-Rull, J., Montes, R., Hernández, I., Barrio, I., Poblete-Echeverria, C., Tardáguila, J., Herrera-Poyatos, A. (2024). Small data deep learning methodology for in-field disease detection. arXiv eprint = 2409.17119.https://arxiv.org/abs/2409.17119
Íñiguez, R., Gutiérrez, S., Poblete-Echeverria, C., Hernández, I., Barrio, I., Tardáguila, J. (2024). Deep learning modelling for non-invasive grape bunch detection under diverse occlusion conditions. Computers and Electronics in Agriculture, Elsevier. Volume 226, 109421, ISSN 0168-1699,https://doi.org/10.1016/j.compag.2024.109421.
Luus, J., Els, D.N.J. and Poblete-Echeverría, C*. (2024). Automatic thermal image filtering for determining representative canopy temperatures in vineyards. Acta Hortic. 1390, 285-292. https://doi.org/10.17660/ActaHortic.2024.1390.35.
Palazzo, L. R., Acosta, G. L., Gil Montenegro, P., Mulidzi, A. R., Pizzolon, N., Zamorano Meriño, D., Poblete-Echeverría, C., Pastenes, C., Venter, T., Perez Peña, J. (2024). Towards a More Sustainable Viticulture: Integration of Solar Photovoltaic Projects in Vineyards of Argentina, Chile, and South Africa. AgriVoltaics Conference Proceedings, 1. https://doi.org/10.52825/agripv.v1i.612.
Poblete-Echeverría, C., Hernández, I., Gutiérrez, S., Íñiguez, R.; Barrio, I., Tardáguila, J. (2023). Using artificial intelligence (AI) for grapevine disease detection based on images. BIO Web Conf., Vol. 68, DOI: https://doi.org/10.1051/bioconf/20236801021.
Íñiguez, R., Poblete-Echeverría, C., Hernández, I., Gutiérrez, S., Barrio, I., Tardáguila, J. (2023). Artificial intelligence and computer vision to assess grape yield components in commercial vineyards. BIO Web Conf., Vol.68 – 01023 doi: https://doi.org/10.1051/bioconf/20236801023.
Poblete-Echeverría, C., Berry, A., Luus, J., Vivier M.A. (2023). Use of VIS-NIR data for characterizing grapevine canopies: remote and proximal sensing approaches at individual vine scale. Acta Hortic. 1360, 339-345. https://doi.org/10.17660/ActaHortic.2023.1360.41.
Poblete-Echeverría, C., Duncan, S.J., McLeod A. (2023). Detection of the spectral signature of Phytophthora root rot (PRR) symptoms using hyperspectral imaging. Acta Hortic. 1360, 77-84. https://doi.org/10.17660/ActaHortic.2023.1360.10.
von Dürckheim, K.E.M., Hoffman, L.C., Poblete-Echeverría, C., Bishop, J.M., Goodwin, T.E., Schulte, B.A., Leslie, A. (2022). A pachyderm perfume: odour encodes identity and group membership in African elephants. Sci Rep 12, 16768. https://doi.org/10.1038/s41598-022-20920-2.
Luus, J., Els, D., Poblete-Echeverría, C. (2022). A case study on grapevines. Automating reference temperature measurements for crop water stress index calculations: A case study on grapevines. Computers and Electronics in Agriculture, Vol. 202, 107329. ISSN 0168-1699. https://doi.org/10.1016/j.compag.2022.107329.
López-Olivari, R., Fuentes, S., Poblete-Echeverría, C., Quintulen-Ancapi, V., and Medina, L. (2022). Site-specific evaluation of canopy resistance models for estimating evapotranspiration over a drip-irrigated potato crop in southern Chile under water-limited conditions. Water. 14(13):2041. https://doi.org/10.3390/w14132041.
Victorino, G., Poblete-Echeverría, C. and Lopes, C.M. (2022). A multicultivar approach for grape bunch weight estimation using image analysis. Horticulturae. 8(3), 233. https://doi.org/10.3390/horticulturae8030233
Daniels, A., Poblete-Echeverría, C., Nieuwoudt, H. H., Botha, N., Opara, U. L. (2021). Classification of Browning on Intact Table Grape Bunches Using Near-Infrared Spectroscopy Coupled with Partial Least Squares-Discriminant Analysis and Artificial Neural Networks. Frontiers in Plant Science. Volume 12 – 2021.
Towers, P., Poblete-Echeverría, C. (2021). Effect of the Illumination Angle on NDVI data composed of mixed surface values obtained over Vertical-Shoot-Positioned Vineyards. Remote Sensing, Vol.13(5), 855; https://doi.org/10.3390/rs13050855.
Jasse, A., Berry, A., Aleixandre-Tudo, J.L., Poblete-Echeverría, C. (2021). Intra-block spatial and temporal variability of plant water status and its effect on grape and wine parameters. Agricultural and Water Management, Vol. 246. 106696, ISSN 0378-3774, https://doi.org/10.1016/j.agwat.2020.106696.
Velez, S., Poblete-Echeverría, C., Rubio, J.A., Vacas, R., Barajas, E. (2021). Estimation of Leaf Area Index in vineyards by analysing projected shadows using UAV imagery. OenoOne, 55(4), 159–180. https://doi.org/10.20870/oeno-one.2021.55.4.4639.
Hacking, C., Poona, N., Poblete-Echeverria, C. (2020). Vineyard yield estimation using 2-D proximal sensing: a multitemporal approach. OenoOne, 54(4), 793–812. https://doi.org/10.20870/oeno-one.2020.54.4.3361.
Poblete-Echeverría, C., Daniels, A.J., Nieuwoudt, H.H. and Opara, U.L. (2020). Artificial neural network as alternative method for prediction of sugar and acidity using near-infrared spectroscopy in table grapes. Acta Hortic. 1292, 321-328. https://doi:10.17660/ActaHortic.2020.1292.42.
Poblete-Echeverría, C., Strever, A.E., Barnard, Y. and Vivier, M.A. (2020). Proximal detection using robotics for vineyard monitoring: a concept. Acta Hortic. 1279, 231-238. https://doi.org/10.17660/ActaHortic.2020.1279.34.
Daniels, A.J., Opara, U.L., Poblete-Echeverría, C. and Nieuwoudt, H.H. (2020). New technologies to maintain quality and reduce postharvest losses of table grapes. Acta Hortic. 1275, 113-120. https://doi.org/10.17660/ActaHortic.2020.1275.16.
Morán, A., Ferreyra, R., Sellés, G., Salgado, E., Cáceres-Mella, A., Poblete-Echeverría, C. (2020). Calibration of the Surface Renewal Method (SR) under Different Meteorological Conditions in an Avocado Orchard. Agronomy,10(5): 730. https://doi.org/10.3390/agronomy10050730.
Rebel, P., Poblete-Echeverría, C., van Zyl, J.G., Wessels, J.P.B., Coetzer, C., McLeod, A. (2020). Determining Mancozeb Deposition Benchmark Values on Apple Leaves for the Management of Venturia inaequalis. Plant Disease, 104(1):168-178. https://doi.org/10.1094/PDIS-04-19-0873-RE.
Vélez, S., Barajas, E., Rubio, J.A., Vacas, R., Poblete-Echeverría, C. (2020). Effect of Missing Vines on Total Leaf Area Determined by NDVI Calculated from Sentinel Satellite Data: Progressive Vine Removal Experiments. Applied Sciences, 10(10):3612. https://doi.org/10.3390/app10103612.
|